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Abstract. The hole spectral functions and from these the spectroscopic factors have been calculated in a
Galilei-invariant way for the ground-state wave functions resulting from spherical Hartree-Fock calculations
with projection onto zero total linear momentum before the variation for the nuclei 4He, 12C, 16O, 28Si,
32S and 40Ca. The results are compared to those of the conventional approach which uses the ground states
resulting from usual spherical Hartree-Fock calculations subtracting the kinetic energy of the center-of-mass
motion before the variation and to the results obtained analytically with oscillator occupations.

PACS. 21.60.-n Nuclear-structure models and methods

1 Introduction

In the first [1] of the present series of two papers we
have demonstrated that in the nuclear many-body prob-
lem Galilei invariance can be restored with the help of
projection techniques not only for simple-oscillator con-
figurations as they have been used in the recently pub-
lished analytical model investigations [2–5], but also for
more realistic wave functions. For this purpose, spherical
Hartree-Fock calculations with projection into the center-
of-mass rest frame before the variation have been per-
formed for the six nuclei 4He, 12C, 16O, 28Si, 32S and
40Ca. The results have been compared with those of con-
ventional spherical Hartree-Fock calculations corrected for
the center-of-mass motion by subtracting its kinetic en-
ergy from the Hamiltonian before or after the variation
(and thus already taking the trivial 1/A effect into ac-
count). As single-particle basis in all nuclei up to 19 os-
cillator major shells have been included, and as effective
interaction the Brink-Boeker force B1 [6] complemented
with a short-range two-body spin-orbit term derived from
the parametrisation D1S [7] of the Gogny force has been
taken. The results were also compared to the analyti-
cal ones obtained with the same Hamiltonian for simple-
oscillator determinants in ref. [4].

For the above-mentioned nuclei the oscillator ground
states are all “non-spurious”, i.e. they contain no center-
of-mass excitations. Consequently, the projected and cor-
rected approaches yield here the same total binding en-
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ergy. This is not the case in the Hartree-Fock prescription.
It was shown that the energy gains of the Galilei invari-
ance conserving projected calculations with respect to the
only corrected ones amount in all these nuclei to a con-
siderable portion of the energy gains due to major-shell
mixing in the latter and are hence equally important.

Drastic effects of the restoration of Galilei invariance
have been obtained for the hole energies in the above nu-
clei, too. As already observed for the oscillator determi-
nants in ref. [4], also in the Hartree-Fock prescription the
holes out of the last occupied shell remain almost unaf-
fected, while for those out of the second and third but
last occupied shells the projected energies are considerably
different from their conventionally corrected counterparts
(which obviously already include the trivial 1/A effect).

Furthermore, in ref. [1] the elastic charge form factors
and corresponding charge densities as well as the math-
ematical Coulomb sum rules have been analyzed. Here
again, for oscillator configurations the conventional ap-
proach complemented with the usual Tassie-Barker cor-
rection [8] and the projection yield identical results. In
contrast to the results for the total binding energies, this
is at least approximately true in the Hartree-Fock pre-
scription, too. It should be stressed, however, that form
factors can be rather sensitive to the particular effective
interaction used in the calculations (as has been discussed
already in ref. [9]), and hence this agreement may dissa-
pear, if more realistic interactions are studied.

We shall now continue the analysis of the various wave
functions obtained in ref. [1] by investigating hole spec-
tral functions and the corresponding spectroscopic factors.
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They play an important role in the analysis of e.g., quasi-
elastic electron scattering and one-nucleon transfer reac-
tions, where they are often used to draw conclusions on
nucleon-nucleon correlations in the considered nuclei. Such
conclusions obviously require the precise knowledge on
how “uncorrelated” systems do behave. Now, in the in-
vestigation [2] with oscillator determinants it was already
demonstrated that the conventional picture of an uncor-
related system has to be modified: instead of the usual
spectroscopic factors of one for all the occupied orbits,
Galilei invariance requires a considerable depletion of the
spectroscopic factors for hole states with excitation en-
ergies larger or equal to 1�ω, while in the last occupied
shell an enhancement of the spectroscopic factors is ob-
tained. Consequently, in the analysis of correlations not
the usual, but the Galilei invariance respecting projected
spectroscopic factors should be taken as reference. How-
ever, in ref. [2] only simple-oscillator configurations were
studied, and it is not clear a priori whether the much more
realistic Hartree-Fock states produce similar features. This
question will be answered in the present paper.

2 Spectral functions and spectroscopic factors

In the following we shall first summarize the usual defini-
tion of hole spectral functions and spectroscopic factors
and then present their Galilei-invariant form. Since we
want to evaluate them with the Galilei-invariant Hartree-
Fock ground states obtained in ref. [1], we shall restrict
ourselves in the derivation to “uncorrelated” systems, i.e.
to one-determinant states of the form

|D〉 ≡
A∏

h=1

b†h|0〉, (1)

where |0〉 denotes the particle vacuum. The determinant
(1) is composed out of single-particle states

|h〉 = b†h|0〉 =
Mb∑
i=1

|i〉D∗
ih =

Mb∑
i=1

c†i |0〉D∗
ih, (2)

which are obtained by a unitary, in general (Mb ×Mb)-
dimensional, transformation D from the Mb spherical ba-
sis states |i〉 = |τinilijimi〉 defining our model space.
The corresponding creation operators will be denoted
by {c†i , i = 1, . . . ,Mb}. For these basis states we shall
take spin-orbit coupled spherical-harmonic oscillator wave
functions. As usual τi denotes the isospin projection,
ni (= 0, 1, . . .) the node number, li the orbital angular mo-
mentum, which is coupled with the spin to total angular
momentum ji, and mi is the 3-projection of the latter. We
shall furthermore restrict ourselves to transformations (2),
which conserve the spherical symmetry of the basis orbits.
Then each hole state |h〉 has definite τh, lh, jh andmh and
the transformation (2) does not depend on mh. For each
set of quantum numbers the sum runs only over the node
number n and eq. (2) reduces to

|h〉 = |τhαhlhjhmh〉 =
∑

n

|τhnlhjhmh〉Dτhlhjh
nαh

, (3)

where we have assumed in addition that the transforma-
tion matrix D is purely real. For doubly even nuclei with
closed j-shells the determinant (1) is then spherically
symmetric, too, and has total angular momentum and
parity 0+.

Furthermore we shall introduce creation operators
C�k τσ,

|�k τσ〉 ≡ C�k τσ|0〉, (4)

which create from the particle vacuum a nucleon in a
plane-wave state with linear momentum ��k and spin and
isospin projections σ and τ . As usual, the hole spectral
function is then defined as the probability amplitude to
pick out such a plane-wave nucleon from a definite hole
state h

fnor
hτσ(�k ) ≡ 〈D|C†

�k τσ
bh|D〉 = 〈h|�k τσ〉, (5)

where the superscript “nor” indicates that the usual (or
“normal”) prescription is used. For all the hole states h
occupied in the one-determinant state (1) this expression
gives essentially (the complex conjugate of) the Fourier
transform of the corresponding single-particle wave func-
tion. Evaluation of eq. (5) yields right away

fnor
hτσ(�k ) = δττh

ilh
∑
λh

Y ∗
lhλh

(k̂)

× (lh1/2jh|λhσmh) gnor
τhαhlhjh

(k), (6)

where the “reduced” spectral function gnor
τhαhlhjh

(k) is
given by

gnor
τhαhlhjh

(k) =
∑

n

(−)nDτhlhjh
nαh

Rnlh(k), (7)

and

Rnlh(k) = b3/2 exp
[
−1
2
(bk)2

]
R̃nlh(bk)

= (−)n
√
2
π

∞∫
0

drr2jlh(kr)Rnlh(r) (8)

is the Fourier transform of the usual radial harmonic-
oscillator function Rnlh(r).

The “normal” hole spectroscopic factors are then de-
fined as

Snor
h ≡

∑
σ

∫
d3�k |fnor

hτσ(�k )|2

= δττh

∞∫
0

dkk2 gnor
τhαhlhjh

(k) 2 = δττh
. (9)

Since the plane waves (4) form a complete set, it is obvious
that the hole spectroscopic factors fulfill the sum rule∑

h

Snor
h = A. (10)
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Fig. 1. The proton-hole spectroscopic factors for the various spherical hole orbits in the considered nuclei are displayed. Open
symbols refer to the projected results Sproj;osc

h̃
out of eq. (26) using pure-harmonic-oscillator occupations. In this case for 32S and

40Ca “0s1/2” denotes the (with respect to the 1s1/2-orbit) orthonormalized states. Full symbols refer to the general results out
of eq. (25) based on the Hartree-Fock determinants obtained in ref. [1] with projection into the center-of-mass rest frame before
the variation. In this case obviously “0s1/2” denotes the lowest s1/2 solution resulting from eq. (18), “1s1/2” the second lowest
one, and for the other orbits “0lj” always the lowest solution is meant. Note, that in the usual approach all the displayed numbers
should be identical to one, irrespective whether pure-oscillator or unprojected Hartree-Fock determinants are considered.

Equations (1) to (10) summarize the usual picture of an
uncorrelated system: the hole spectroscopic factors are
equal to one for all occupied states and vanish for the
unoccupied ones, and the hole spectral functions are noth-
ing but the wave functions of the occupied single-nucleon
states in momentum representation.

Obviously, the above description is not Galilei invari-
ant. First of all, neither the ground state |D〉 of the consid-
ered A-nucleon system nor the states bh|D〉 of the (A−1)-
nucleon system live in their respective center-of-mass rest
frame but contain “spurious” admixtures from the mo-
tion of the corresponding systems as a whole. In order to
obtain a Galilei-invariant description, as demonstrated in
ref. [1], instead of the determinant (1)

|D; 0〉 ≡ Ĉ(0)|D〉√
〈D|Ĉ(0)|D〉

(11)

has to be used as test wave function in the variational cal-
culation yielding the Hartree-Fock transformationD. Here

Ĉ(0) ≡
∫
d3�a Ŝ(�a ), (12)

where
Ŝ(�a ) ≡ exp

{
i�a · P̂

}
(13)

is the usual shift operator (P̂ being the operator of
the total linear momentum of the considered system),
projects |D〉 in its center-of-mass rest frame. For the

normalization in eq. (11) we obtain

N0 ≡ 〈D|Ĉ(0)|D〉 =
∫
d3�a 〈D|Ŝ(�a )|D〉

= 4πb3
∞∫
0

dαα2 exp
{
−A
4
α2

}
det s(α)

= 4πb3
(
4
A

)3/2
∞∫
0

dy e−y2
y2 det s

(
2√
A
y

)

≡ 4πb3
(
4
A

)3/2

n0 , (14)

where b is the oscillator length parameter, �α ≡ �a/b,
y = α

√
A/2 and the single-particle matrix elements of

the shift operator

shh′(α) ≡ eα
2/4 〈h|Ŝ(êz · �a )|h′〉 (15)

have been given in ref. [1]. In eqs. (14) and (15) we have
used that |D〉 is spherically symmetric (i.e., invariant
under rotations) so that we can put the shift vector
without loss of generality into the z-direction.

In the same way we define

Nhh′ ≡ 〈D|b†hĈ(0)bh′ |D〉 ≡ 4πb3
(

4
A− 1

)3/2

nhh′ ,

(16)
and

Hhh′ ≡ 〈D|b†hĤĈ(0)bh′ |D〉 ≡ 4πb3
(

4
A− 1

)3/2

hhh′ ,

(17)
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Fig. 2. The square of 3-momentum k times the square of the (reduced) spectral function is plotted versus the 3-momentum for the
s1/2-proton-hole in the nucleus 4He. Open circles refer to the results (7) of normal Hartree-Fock with subtraction of the kinetic
energy of the center-of-mass motion before the variation, full circles to the results (22) of Hartree-Fock with projection into the
center-of-mass rest frame before the variation. For comparison the normal (open inverted triangles) and projected (full triangles)
for pure-oscillator occupation are presented. In the left part of the figure we display the corresponding curves in a logarithmic, in
the right part in a linear scale. The integral over 3-momentum from zero to infinty yields for the “normal” approaches just one,
while for the projected calculations the spectroscopic factors out of fig. 1 are obtained. The oscillator length was here b = 1.41 fm.

where Ĥ denotes the same Hamiltonian as has been used
to obtain the Hartree-Fock transformation D. Solving the
generalized eigenvalue problem

(h− En)w = 0 with wTnw ≡ 1 , (18)

the Galilei-invariant form of the one-hole states can be
written as

|h̃; 0〉 =
∑
αh

(τhlhjh)
Ĉ(0)bh|D〉

×wτhlhjh

αhh̃

1√
4πb3(4/(A− 1))3/2

. (19)

Furthermore, for the outgoing (or incoming) continuum
nucleon not the state (4) but a relative wave function with
respect to the (A − 1)-nucleon system should be used.
Consequently, we get for the Galilei-invariant hole spectral
function

fproj

h̃τσ
(�k ) ≡ δττh

n
−1/2
0

4πb3(4/A)3/4(4/(A− 1))3/4

·
∑
αh

(τhlhjh)〈D|C†
�k τσ

exp{−i�k · �RA−1}Ĉ(0)bh|D〉wτhlhjh

αhh̃

= δττh

n
−1/2
0

4πb3(4/A)3/4(4/(A− 1))3/4

·
∑
αh

(τhlhjh) ∑
αh′ lh′ jh′mh′

(τh)〈h′|�k τhσ〉

· 〈D|b†h′ exp{−i�k · �RA−1}Ĉ(0)bh|D〉wτhlhjh

αhh̃
, (20)

where �RA−1 denotes the center-of-mass coordinate of the
(A− 1)-nucleon system. Again the spherical symmetry of
|D〉 and the properties of the hole creation and annihi-
lation operators under rotations can be used to put for
the evaluation of the matrix element in eq. (20) one vec-
tor without loss of generality in the z-direction. Here we
choose �k = êz · �k. In analogy to eq. (6) we can write

fproj

h̃τσ
(�k ) = δττh

ilh
∑
λh

Y ∗
lhλh

(k̂)

× (lh1/2jh|λhσmh) g
proj

τhh̃ lhjh
(k), (21)

where the “reduced” projected spectral function is now
given by

gproj

τhh̃ lhjh
(k) ≡

(
A

A−1 b
2

)3/4

exp
{
−1
2

A

A−1(bk)
2

}
n
−1/2
0

·
∑
αh

(τhlhjh)
wτhlhjh

αhh̃

∑
lh′jh′αh′

(τh)
R̃τhlh′ jh′

αh′ (bk)

·
∑
L

∆(lh, lh′ , L)
1
2
[
1 + (−)lh+lh′+L

] √2jh′ + 1
2jh + 1

· (−)jh′−1/2(jh′jhL|1/2 − 1/2 0) 2

·
∑
m>0

(−)jh−m(jh′jhL|m −m 0)
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Fig. 3. Same as in fig. 2, but for the s1/2-proton-hole in the nucleus 12C. Here the oscillator length was b = 1.72 fm.

Fig. 4. Same as in fig. 3, but for the p3/2-proton-hole in the nucleus 12C.

· exp
{

1
A− 1

(
bk

2

)2
} ∞∫

0

dye−y2
y2

π/2∫
0

dϑ sinϑ

·
{
1
2
[1 + (−)lh+lh′ ](−)(lh′−lh)/2

·Re
[(
z(τh)(bk, α, ϑ)

)−1

αhlhjhm; αh′ lh′ jh′m
det z

]

+
1
2
[1− (−)lh+lh′ ](−)(lh′−lh−1)/2

· Im
[(
z(τh)(bk, α, ϑ)

)−1

αhlhjhm; αh′ lh′ jh′m
det z

]}
. (22)

Here ∆(lh, lh′ , L) = 1 if |lh − lh′ | ≤ L ≤ lh + lh′ and = 0
if not, y ≡ α

√
A− 1/2, ϑ is the angle between the shift

vector and the z-direction and

R̃τhlh′jh′
αh′ (bk) ≡

∑
n′
(−)n′

D
τhlh′jh′
n′αh′ R̃n′lh′ (bk) (23)

denotes the polynomial part of the Fourier transform of
the radial wave function of the hole state h′. The matrix
elements of z(τh) are identical to those given in appendix B
of ref. [1] except for the fact that the argument qb/A has to
be replaced here by kb/(A−1). The determinant factorizes
in a proton and a neutron part

detz =
∏

τ=p,n

detz(τ), (24)
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Fig. 5. Same as in fig. 2, but for the s1/2-proton-hole in the nucleus 16O. Here the oscillator length was b = 1.79 fm.

Fig. 6. Same as in fig. 5, but for the p3/2-proton-hole in the nucleus 16O.

and obviously depends on the same arguments as the ma-
trix elements of the inverse matrices

(
z(τ)
)−1

in eq. (22).
Similarly as in eq. (9), the projected spectroscopic fac-

tors are then defined by

Sproj

h̃
≡
∑

σ

∫
d3�k |fproj

h̃τσ
(�k )|2

= δττh

∞∫
0

dk k2 gproj

τhh̃ lhjh
(k)

2
. (25)

It has been demonstrated in ref. [2] that, if the hole
states (2) are pure-harmonic-oscillator states and if |D〉
is a “non-spurious” oscillator determinant, then eqs. (22)

and (25) can be evaluated analytically. In this case one
does not even have to solve the generalized eigenvalue
problem (18). In all doubly closed j-shell nuclei up to 28Si,
the overlap matrix nhh′ out of eq. (16) is diagonal, so that
the w’s needed in eq. (21) are simply the inverse square
roots of its diagonal elements. In 32S and 40Ca two s-states
are occupied and do mix via eq. (16). Here one can always
Gram-Schmidt–orthonormalize the 0s-state with respect
to the 1s-state, as has been shown in ref. [2]. The result of
these analytical calculations was that the (reduced) hole
spectral function (22) can be written as

gproj; osc

τhh̃ lhjh
(k) ≡ Rrel

h̃lh
(k)
√
Sproj; osc

h̃
, (26)
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Fig. 7. Same as in fig. 5, but for the p1/2-proton-hole in the nucleus 16O.

Fig. 8. Same as in fig. 2, but for the s1/2-proton-hole in the nucleus 28Si. Here the oscillator length was b = 1.85 fm.

where, in the one-dimensional cases, the subscript h̃ = nh

and

Rrel
nhlh

(k) ≡ (−)nh

(
A

A− 1 b
2

)3/4

× exp
{
−1
2

A

A− 1(bk)
2

}
R̃nhlh

(√
A

A− 1bk
)
, (27)

while for the lowest s-states in 32S and 40Ca the Rrel
h̃lh

are linear combinations of the functions (27) for lh = 0
and nh = 0, 1 with the corresponding expansion coeffi-
cients resulting from the orthonormalization. The func-
tions (27) are just the usual oscillator wave functions in
momentum representation; however, the nucleon mass M
entering the parameter b has been replaced by the reduced
mass (A−1)M/A. This is indicated by the superscript rel.

The analytical evaluation in ref. [2] yielded

Sproj; osc

h̃
=




1 for 0s-holes in 4He
4
5 for 0s-holes in 16O
16
15 for 0p-holes in 16O

1410
1521 for 0s̃-holes in

40Ca
1400
1521 for 0p-holes in

40Ca
1600
1521 for 1s-holes in

40Ca
1600
1521 for 0d-holes in

40Ca




. (28)

It is easily checked that∑
h̃

Sproj; osc

h̃
= A, (29)
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Fig. 9. Same as in fig. 8, but for the p3/2-proton-hole in the nucleus 28Si.

Fig. 10. Same as in fig. 8, but for the p1/2-proton-hole in the nucleus 28Si.

as expected, since the functions (27) form again a com-
plete orthonormal set. At first sight it may seem strange
to obtain spectroscopic factors which are larger than one;
however, the oscillator results (28) are identical to those
obtained by Dieperink and de Forest [10] with rather dif-
ferent methods and are easy to understand by simple con-
siderations as discussed in ref. [2].

Unlike the “normal” result (7) and the projected os-
cillator result (26) for non-spurious oscillator determi-
nants |D〉, the general form of the reduced spectral func-
tion (22) cannot be written as the product of a normalized
single-particle wave function times some number. Thus,
the sum of the spectroscopic factors over all hole states
does in general yield a smaller number than A, since

exp{−i�k · �RA−1}C�k τσ|D〉 does not contain the complete
set of configurations created by Ĉ(0) bh|D〉. We therefore
write ∑

h̃

Sproj

h̃
= A − ε. (30)

It turns out, however, that for the cases discussed in the
next section ε/A varies only between 0.12 and 0.35%. The
violation of the sum rule due to non-trivial correlations
induced by the projector into the uncorrelated Hartree-
Fock systems investigated here is hence rather small, and
at least approximately, the separation of eq. (22) into a
product of a normalized single-particle function and the
square root of the spectroscopic factor is still true.
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Fig. 11. Same as in fig. 8, but for the d5/2-proton-hole in the nucleus 28Si.

Fig. 12. Same as in fig. 2, but for the lowest s1/2-proton-hole in the nucleus 32S. Here the oscillator length was b = 1.91 fm.

3 Results and discussion

We considered here the six doubly closed j-shell nuclei
4He, 12C, 16O, 28Si, 32S and 40Ca. In ref. [1] for these nu-
clei the results of Galilei-invariant spherical Hartree-Fock
calculations with projection into the center-of-mass rest
frame have been compared to those of standard spherical
Hartree-Fock calculations, in which only the kinetic en-
ergy of the center-of-mass motion was subtracted from the
Hamiltonian before the variation. As Hamiltonian the ki-
netic energy plus the Coulomb interaction plus the Brink-
Boeker force B1 [6] complemented with a short-range
(0.5 fm) two-body spin-orbit term having the same vol-
ume integral as the Gogny force D1S [7] has been used.
The Hartree-Fock wave functions resulting from these cal-

culations using as single-particle basis 19 major oscillator
shells will be analyzed in the following. Furthermore, as
in ref. [1], also here the results will be compared to those
obtained with simple-oscillator determinants.

We shall first discuss the hole spectroscopic factors.
Since in the normal approach these are all equal to one (see
eq. (9)), irrespective whether one uses simple-oscillator de-
terminants or the Hartree-Fock ground states |Dc〉 out of
eq. (27) in ref. [1], we can restrict ourselves to the dis-
cussion of the Galilei-invariant spectroscopic factors out
of eqs. (26) and (25) for the oscillator occupations and
for the Hartree-Fock ground states |Dpr〉 (see eq. (28) of
ref. [1]) obtained with projection into the center-of-mass
rest frame before the variation, respectively. Since further-
more in the oscillator approach proton- and neutron-hole
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Fig. 13. Same as in fig. 12, but for the p3/2-proton-hole in the nucleus 32S.

Fig. 14. Same as in fig. 12, but for the p1/2-proton-hole in the nucleus 32S.

spectroscopic factors are identical and even in the Hartree-
Fock approach almost undistiguishable, only the proton-
hole spectroscopic factors will be discussed.

The results are summarized in fig. 1. Open symbols
refer to the projected oscillator, closed (or crossed) sym-
bols to the projected Hartree-Fock results. On the abscissa
the relevant orbits are presented. They are pure-oscillator
orbits (or for the 0s1/2-states in 32S and 40Ca the states
resulting from Gram-Schmidt orthonormalization with re-
spect to the 1s1/2-states) in the former, the lowest (“0”)
or second lowest (“1”) Hartree-Fock single-particle states
resulting from the solution of eq. (18) for each set of l
and j quantum numbers in the latter case. The figure
clearly shows that, though based on rather different wave
functions, oscillator and Hartree-Fock results are almost
identical. Thus, for the spectroscopic factors, which are

integral properties, the choice of the single-particle basis,
which is irrelevant in the normal approach, does not seem
to matter in the Galilei-invariant prescription either, at
least as long as only uncorrelated systems are considered.
As already discussed in ref. [2], one sees a considerable de-
pletion of the strengths of the hole states with excitation
energies larger or equal to 1�ω and an enhancement of the
strengths of the hole orbits near the Fermi energy. The de-
pletion of the lowest s-state in 16O is as large as 20% and
even for the lowest s- and p3/2-states in 32S and 40Ca
still depletions of more than 8% are obtained. Exceptions
of the �ω-rule are the spectroscopic factors of the p1/2-
holes in 28Si and 32S. Though belonging to the second but
last shell below the Fermi energy, these are considerably
less affected by the projection than their p3/2-spin-orbit
partners. A similar spin-orbit effect for these orbits was
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Fig. 15. Same as in fig. 12, but for the d5/2-proton-hole in the nucleus 32S.

Fig. 16. Same as in fig. 12, but for the second lowest s1/2-proton-hole in the nucleus 32S.

also seen in the corresponding single-particle energies dis-
cussed in ref. [1]. It results from the presence of the d5/2-
and the absence of the d3/2-orbit in both these nuclei and
indicates the dominance of couplings to angular momen-
tum one in the spurious center-of-mass motion.

As already discussed, the oscillator results fulfill the
sum rule (29) exactly, while for the Hartree-Fock this is
only approximately true (see eq. (30)). However, from the
fact that oscillator and Hartree-Fock spectroscopic fac-
tors are almost identical, it is clear that the violation ε of
the sum rule (30) is, as mentioned before, only a rather
small effect. It was furthermore discussed in ref. [4] that
in the oscillator approach both the normal spectroscopic
factors (all equal to one) together with the normal single-
particle energies as well as the projected spectroscopic fac-
tors together with the projected single-particle energies

fulfill Kolthun’s sum rule [11] exactly, which was inter-
preted as a nice check for the consistency of the projected
results. Now, in case of the harmonic-oscillator approach,
the projected total energy for the A-nucleon ground state
is identical to that of the normal approach, provided the
latter is corrected by subtracting the kinetic energy of
the center-of-mass motion. As has been demonstrated in
ref. [1], in the Hartree-Fock prescription this is not the
case. Thus, while in the normal Hartree-Fock approach
Kolthun’s sum rule is fulfilled by definition, in the pro-
jected Hartree-Fock prescription, as already for the total
hole strength sum rule (30), this is only approximately
true. However, again the violation is small.

The results presented in fig. 1 show that our usual pic-
ture of an uncorrelated system has to be changed consid-
erably. This has important consequences for the analysis
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Fig. 17. Same as in fig. 2, but for the lowest s1/2-proton-hole in the nucleus 40Ca. Here the oscillator length was b = 1.97 fm.

Fig. 18. Same as in fig. 17, but for the p3/2-proton-hole in the nucleus 40Ca.

of experiments, in which deviations of the hole spectro-
scopic factors from one are usually interpreted as finger-
prints of nucleon-nucleon correlations. However, we have
shown that in a Galilei-invariant description the spectro-
scopic factors even of an uncorrelated system differ from
one considerably. Only deviations from the projected re-
sults out of fig. 1 can be related to non-trivial correlations.

We shall now turn our attention to the reduced spec-
tral functions. Again only the results for the proton-
hole states will be presented. The results for the differ-
ent proton-hole states in the various considered nuclei are
presented in figs. 2 to 22. The figures show the square
of the reduced spectral functions times the square of the
3-momentum as functions of the 3-momentum. In the left

part of each figure the results are given in a logarithmic
scale, in the right part in a linear scale. Open circles re-
fer to the normal results (eq. (7)) for the ground states
obtained with standard spherical Hartree-Fock subtract-
ing the kinetic energy of the center-of-mass motion from
the Hamiltonian before the variation in ref. [1]. The in-
tegrals over the 3-momentum from zero to infinity yield
for these curves always one. Closed circles denote the re-
sults (eq. (22)) for the ground states obtained by Galilei-
invariant projected Hartree-Fock calculations (CMPSHF)
in ref. [1]. Here the integral yields the projected spectro-
scopic factors out of eq. (25), which are displayed by full
(or crossed) symbols in fig. 1. Open inverted triangles
represent again the results (7) of the normal approach,
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Fig. 19. Same as in fig. 17, but for the p1/2-proton-hole in the nucleus 40Ca.

Fig. 20. Same as in fig. 17, but for the d5/2-proton-hole in the nucleus 40Ca.

however, now for simple-oscillator ground states. The in-
tegrals of these functions are obviously again all equal to
one. Finally, full triangles are used for the (analytically
obtained) projected oscillator results. Here the integrals
yield the harmonic-oscillator spectroscopic factors out of
eq. (26), which are displayed by open symbols in fig. 1.

Figure 2 displays the reduced proton spectral functions
for s1/2-proton-holes in 4He. Here oscillator and Hartree-
Fock results are rather similar at low momenta (below
about 2 inverse fm), while at higher momenta they dif-
fer considerably due to the major-shell mixing in the lat-
ter. On the other hand, the projected results for both ap-
proaches differ considerably from the unprojected ones al-
ready at low momenta. Since (see fig. 1) the integrals of all
curves give almost the same spectroscopic factor one, this
large difference is entirely due to the fact that the pro-

jected approaches yield relative wave functions instead of
the usual ones. The difference between relative and usual
wave functions is obviously largest in 4He and decreases
with increasing mass number.

Figure 3 shows the same plots for the s1/2-proton-
holes in 12C. Again a rather large similarity between os-
cillator and Hartree-Fock results is obtained at low mo-
menta, while large differences are seen above about 2 in-
verse fm. Because of the larger mass, the difference of rel-
ative and usual wave functions is here less pronounced;
however, now the projected results are quenched by about
18% with respect to the normal ones due to the consider-
ably smaller spectroscopic factor.

For the p3/2-proton-holes in 12C in fig. 4, the difference
of oscillator and Hartree-Fock results due to the larger
major-shell mixing increases already at low momenta.
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Fig. 21. Same as in fig. 17, but for the second lowest s1/2-proton-hole in the nucleus 40Ca.

Fig. 22. Same as in fig. 17, but for the d3/2-proton-hole in the nucleus 40Ca.

Instead of a quenching, because of the larger spectroscopic
factor here an enhancement of the projected results with
respect to the unprojected ones is seen.

The results for the various proton-hole states in 16O
displayed in figs. 5 to 7 show, as expected, rather similar
features as those for 12C, except that here the major-shell
mixing becomes even more important, so that the devia-
tions of the Hartree-Fock results from the oscillator ones
are larger and start already at lower momenta. Again,
according to the corresponding spectroscopic factors, the
projected s1/2 spectral functions (fig. 5) are quenched
with respect to the usual ones, while for the projected
p3/2 (fig. 6) and p1/2 spectral functions (fig. 7) an en-
hancement is obtained.

Similar arguments hold for the various hole states in
28Si (figs. 8 to 11). Here the projected spectral functions

for the s1/2- (fig. 8) and p3/2-holes (fig. 9) are quenched,
while those for the d5/2-holes (fig. 11) show an enhance-
ment due to the corresponding spectroscopic factors. That
such an (though small) enhancement is also seen for the
projected p1/2-hole spectral functions (fig. 10) is due to
the absence of the d3/2-state in the ground state and has
been discussed already above.

This pattern is essentially repeated for 32S (figs. 12
to 16). The projected spectral functions are quenched for
the lowest s1/2- (fig. 12) and the p3/2-states (fig. 13),
enhanced for the d5/2- (fig. 15) and second lowest s1/2-
states (fig. 16), while for the p1/2-state (fig. 14) though
belonging to the second but last occupied shell because
of the occupied d5/2- and unoccupied d3/2-orbits again a
slight enhancement is obtained.
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Finally, for the doubly closed shell nucleus 40Ca
(figs. 17 to 22) the spectral functions out of the last occu-
pied shell (d5/2, second lowest s1/2 and d3/2 in figs. 20, 21
and 22, respectively) are enhanced by almost the same fac-
tor, while for the holes with excitation energy 1�ω (p3/2
and p1/2 in figs. 18 and 19) or 2�ω (the lowest s1/2 in
fig. 17) the projected results are quenched with respect to
the normal ones.

Note, that in all cases, though sometimes a little ob-
scured by the logarithmic plotting, considerable differ-
ences are seen between the projected and the normal
Hartree-Fock hole spectroscopic functions, which cannot
be explained by “quenching” or “enhancement” due to the
corresponding spectroscopic factors alone. This demon-
strates that the single-particle wave functions obtained by
the Galilei-invariant Hartree-Fock prescription are rather
different from those obtained via the usual Hartree-Fock
approach as has been demonstrated already by other ob-
servables in ref. [1].

4 Conclusions

Normally, we describe the ground state of an uncorre-
lated A-nucleon system by a single Slater-determinant, in
which the energetically lowest-A single-particle states are
fully occupied while the higher orbits are empty. The hole
spectral functions of such a system are then the Fourier
transforms of the single-particle states it is composed of,
and the hole spectroscopic factors are all equal to one.

This simple picture, however, is not true any more, if
Galilei invariance is respected. As already demonstrated
in ref. [10,2] using simple-oscillator configurations for the
ground state of some doubly closed major-shell nuclei,
Galilei invariance requires a considerable depletion of the
spectroscopic factors for hole states out of the second and
third but last shell below the Fermi energy, while those for
the hole states out of the last shell are enhanced, so that
the sum rule for the total hole strength remains conserved.

These results are nicely confirmed even for the more
realistic Hartree-Fock wave functions analyzed in the
present paper. The Galilei invariance respecting hole
spectroscopic factors for the Hartree-Fock ground states

resulting from calculations with projection into the center-
of-mass rest frame before the variation are almost identical
to the projected oscillator results from ref. [2] and thus ful-
fill the sum rule for the total hole strength in a very good
approximation, too. Furthermore, in both the oscillator
as well as the Hartree-Fock description, Galilei invariance
induces an interesting spin-orbit effect into the 0p-shell of
the closed subshell nuclei 28Si and 32S. On the other hand,
as expected because of the major-shell mixing, the hole
spectral functions obtained in the projected Hartree-Fock
prescription, are quite different from the simple projected
oscillator ones.

The results clearly show, that not only in the simple-
oscillator approximation but also for more realistic ap-
proaches the simple picture of an uncorrelated system
has to be changed considerably if Galilei invariance is re-
spected. This may have serious consequences for the anal-
ysis of correlations in the nuclei, since the correct uncor-
related reference is considerably different from that which
is usually assumed.
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by the Deutsche Forschungsgemeinschaft via the contracts
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